Through a study of multi-gas mixture datasets, we show that in multi-component spectral analysis, the number of functional or non-functional principal components required to retain the essential information is the same as the number of independent constituents in the mixture set. Due to the mutual in-dependency among different gas molecules, near one-to-one projection from the principal component to the mixture constituent can be established, leading to a significant simplification of spectral quantification. Further, with the knowledge of the molar extinction coefficients of each constituent, a complete principal component set can be extracted from the coefficients directly, and few to none training samples are required for the learning model. Compared to other approaches, the proposed methods provide fast and accurate spectral quantification solutions with a small memory size needed.
translated by 谷歌翻译
As the quality of optical sensors improves, there is a need for processing large-scale images. In particular, the ability of devices to capture ultra-high definition (UHD) images and video places new demands on the image processing pipeline. In this paper, we consider the task of low-light image enhancement (LLIE) and introduce a large-scale database consisting of images at 4K and 8K resolution. We conduct systematic benchmarking studies and provide a comparison of current LLIE algorithms. As a second contribution, we introduce LLFormer, a transformer-based low-light enhancement method. The core components of LLFormer are the axis-based multi-head self-attention and cross-layer attention fusion block, which significantly reduces the linear complexity. Extensive experiments on the new dataset and existing public datasets show that LLFormer outperforms state-of-the-art methods. We also show that employing existing LLIE methods trained on our benchmark as a pre-processing step significantly improves the performance of downstream tasks, e.g., face detection in low-light conditions. The source code and pre-trained models are available at https://github.com/TaoWangzj/LLFormer.
translated by 谷歌翻译
Image restoration under hazy weather condition, which is called single image dehazing, has been of significant interest for various computer vision applications. In recent years, deep learning-based methods have achieved success. However, existing image dehazing methods typically neglect the hierarchy of features in the neural network and fail to exploit their relationships fully. To this end, we propose an effective image dehazing method named Hierarchical Contrastive Dehazing (HCD), which is based on feature fusion and contrastive learning strategies. HCD consists of a hierarchical dehazing network (HDN) and a novel hierarchical contrastive loss (HCL). Specifically, the core design in the HDN is a Hierarchical Interaction Module, which utilizes multi-scale activation to revise the feature responses hierarchically. To cooperate with the training of HDN, we propose HCL which performs contrastive learning on hierarchically paired exemplars, facilitating haze removal. Extensive experiments on public datasets, RESIDE, HazeRD, and DENSE-HAZE, demonstrate that HCD quantitatively outperforms the state-of-the-art methods in terms of PSNR, SSIM and achieves better visual quality.
translated by 谷歌翻译
The state-of-the-art language model-based automatic metrics, e.g. BARTScore, benefiting from large-scale contextualized pre-training, have been successfully used in a wide range of natural language generation (NLG) tasks, including machine translation, text summarization, and data-to-text. Recent studies show that considering both major errors (e.g. mistranslated tokens) and minor errors (e.g. imperfections in fluency) can produce high-quality human judgments. This inspires us to approach the final goal of the evaluation metrics (human-like evaluations) by automatic error analysis. To this end, we augment BARTScore by incorporating the human-like error analysis strategies, namely BARTScore++, where the final score consists of both the evaluations of major errors and minor errors. Experimental results show that BARTScore++ can consistently improve the performance of vanilla BARTScore and outperform existing top-scoring metrics in 20 out of 25 test settings. We hope our technique can also be extended to other pre-trained model-based metrics. We will release our code and scripts to facilitate the community.
translated by 谷歌翻译
Document-level relation extraction faces two overlooked challenges: long-tail problem and multi-label problem. Previous work focuses mainly on obtaining better contextual representations for entity pairs, hardly address the above challenges. In this paper, we analyze the co-occurrence correlation of relations, and introduce it into DocRE task for the first time. We argue that the correlations can not only transfer knowledge between data-rich relations and data-scarce ones to assist in the training of tailed relations, but also reflect semantic distance guiding the classifier to identify semantically close relations for multi-label entity pairs. Specifically, we use relation embedding as a medium, and propose two co-occurrence prediction sub-tasks from both coarse- and fine-grained perspectives to capture relation correlations. Finally, the learned correlation-aware embeddings are used to guide the extraction of relational facts. Substantial experiments on two popular DocRE datasets are conducted, and our method achieves superior results compared to baselines. Insightful analysis also demonstrates the potential of relation correlations to address the above challenges.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Brain network provides important insights for the diagnosis of many brain disorders, and how to effectively model the brain structure has become one of the core issues in the domain of brain imaging analysis. Recently, various computational methods have been proposed to estimate the causal relationship (i.e., effective connectivity) between brain regions. Compared with traditional correlation-based methods, effective connectivity can provide the direction of information flow, which may provide additional information for the diagnosis of brain diseases. However, existing methods either ignore the fact that there is a temporal-lag in the information transmission across brain regions, or simply set the temporal-lag value between all brain regions to a fixed value. To overcome these issues, we design an effective temporal-lag neural network (termed ETLN) to simultaneously infer the causal relationships and the temporal-lag values between brain regions, which can be trained in an end-to-end manner. In addition, we also introduce three mechanisms to better guide the modeling of brain networks. The evaluation results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrate the effectiveness of the proposed method.
translated by 谷歌翻译
Face Restoration (FR) aims to restore High-Quality (HQ) faces from Low-Quality (LQ) input images, which is a domain-specific image restoration problem in the low-level computer vision area. The early face restoration methods mainly use statistic priors and degradation models, which are difficult to meet the requirements of real-world applications in practice. In recent years, face restoration has witnessed great progress after stepping into the deep learning era. However, there are few works to study deep learning-based face restoration methods systematically. Thus, this paper comprehensively surveys recent advances in deep learning techniques for face restoration. Specifically, we first summarize different problem formulations and analyze the characteristic of the face image. Second, we discuss the challenges of face restoration. Concerning these challenges, we present a comprehensive review of existing FR methods, including prior based methods and deep learning-based methods. Then, we explore developed techniques in the task of FR covering network architectures, loss functions, and benchmark datasets. We also conduct a systematic benchmark evaluation on representative methods. Finally, we discuss future directions, including network designs, metrics, benchmark datasets, applications,etc. We also provide an open-source repository for all the discussed methods, which is available at https://github.com/TaoWangzj/Awesome-Face-Restoration.
translated by 谷歌翻译
对于头颈癌(HNC)患者管理,自动总肿瘤量(GTV)细分和准确的治疗前癌症复发预测对于协助医师设计个性化管理计划非常重要,这有可能改善治疗结果和治疗结果和HNC患者的生活质量。在本文中,我们基于HNC患者的组合预处理正电子发射断层扫描/计算机发射断层扫描(PET/CT)扫描,开发了一种自动原发性肿瘤(GTVP)和淋巴结(GTVN)分割方法。我们从分段的肿瘤体积中提取了放射素学特征,并构建了多模式肿瘤复发生存率(RFS)预测模型,该模型融合了预测由单独的CT放射线学,PET放射线学和临床模型融合在一起。我们进行了5倍的交叉验证,以训练和评估MICCAI 2022头和颈部肿瘤分割和结果预测挑战(Hecktor)数据集的方法。 GTVP和GTVN分割的测试队列的集合预测分别达到0.77和0.73,RFS预测的C-指数值为0.67。该代码公开可用(https://github.com/wangkaiwan/hecktor-2022-airt)。我们团队的名字叫艾特。
translated by 谷歌翻译
我们描述了JD Explore Academy对WMT 2022共享的一般翻译任务的提交。我们参加了所有高资源曲目和一条中型曲目,包括中文英语,德语英语,捷克语英语,俄语 - 英语和日语英语。我们通过扩大两个主要因素,即语言对和模型大小,即\ textbf {vega-mt}系统来推动以前的工作的极限 - 进行翻译的双向培训。至于语言对,我们将“双向”扩展到“多向”设置,涵盖所有参与语言,以利用跨语言的常识,并将其转移到下游双语任务中。至于型号尺寸,我们将变压器限制到拥有近47亿参数的极大模型,以完全增强我们VEGA-MT的模型容量。此外,我们采用数据增强策略,例如单语数据的循环翻译以及双语和单语数据的双向自我训练,以全面利用双语和单语言数据。为了使我们的Vega-MT适应通用域测试集,设计了概括调整。根据受约束系统的官方自动分数,根据图1所示的sacrebleu,我们在{zh-en(33.5),en-zh(49.7)(49.7),de-en(33.7)上获得了第一名-de(37.8),CS-EN(54.9),En-CS(41.4)和En-Ru(32.7)},在{ru-en(45.1)和Ja-en(25.6)}和第三名上的第二名和第三名在{en-ja(41.5)}上; W.R.T彗星,我们在{zh-en(45.1),en-zh(61.7),de-en(58.0),en-de(63.2),cs-en(74.7),ru-en(ru-en(ru-en)上,我们获得了第一名64.9),en-ru(69.6)和en-ja(65.1)},分别在{en-cs(95.3)和ja-en(40.6)}上的第二名。将发布模型,以通过GitHub和Omniforce平台来促进MT社区。
translated by 谷歌翻译